If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2-54x-15=0
a = 24; b = -54; c = -15;
Δ = b2-4ac
Δ = -542-4·24·(-15)
Δ = 4356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4356}=66$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-66}{2*24}=\frac{-12}{48} =-1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+66}{2*24}=\frac{120}{48} =2+1/2 $
| 24x^2-15=54x | | 0=-(x-3)(x-7) | | -(c-20)=8 | | 8x-6=12x+4 | | 2x+5=x+50 | | 2x+37=4x-59 | | 3(x+8)+9=42 | | 8(2+2g)=48g | | (2w+8)(2w+10)=224 | | 12x–48=10x+30 | | (4+2x)=15-(7) | | 3t(3t-4)=2(t+8) | | 0.03x=200 | | 2x/5=+1=7 | | (5t-6/6)-(4+6/4)=(3/4)-t | | 9n=4+8 | | (5t-6/6)-(4+6/4)=3/4-t | | 5s+6=12 | | 7x-21=3x+83 | | 64=-16t^2+32t=48 | | 23-3(2x+8)=x-15 | | √(3x+1)+1=√x | | x/(x+1)-(x+1)/x=13/6 | | h=-16(2)(2)+64+48 | | 3a-10=-71 | | 13n-n-16n=20 | | 2=-16t^2+32t+48 | | -16t^2+32t+48=32 | | 20-3x=28 | | x^2-16x-64=196 | | 3x+7=−5x+5 | | x^2-16x=260 |